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Abstract
Artificial immune system (AIS) mimics the superiproperties of
biological immune system and provides an effectimethod in
intelligent computing and intelligent system design But the
disease-causing mechanisms of immune pathology leavie sever
security problems in artificial immune system. Imetpaper, we
analyzed the basic principles of immune protectiord immune
pathology of biological system considering its agagion in artificial
immune system. Then we take artificial immune défieg system as
an example to analyze the cause and potentialeinée of immune
pathology on AIS. As to the different security plevhs from
immunodeficiency, hypersensitivity and autoimmunitwe put
forward corresponding measures to reinforce tharggcrobustness
and stability of artificial immune system and theffectively avoid
these problems.
Keywords: Immune pathology; artificial immune system; negativ
selection algorithm; immunodeficiency; system Efficy.

l. | NTRODUCTION

Load forecasting is an essential procedure in fheraiion of
power system. Several artificial intelligent basaddels have
been used to perform the forecasting task. Basedhen
forecasted load, power system operators assignedhdo
generating units, the amount of electrical power ke
generated. This is to ensure that the customerdvmdeive
continuous supply and at the same time the ecorarofahe
dispatch is maintained. Timely implementations afchs
decisions lead to the improvement of network rédlitgband
hence, reduced the occurrence of equipment failaned
blackouts [1]. The daily load demand is highly afésl by
factors such as time in a day, type of day (weekdagekend
and holidays), and temperature, weather conditibhsrefore,
the relationship between these factors and the tedand
need to be determined so that forecast can be asdecurate
as possible. Various techniques have been implexdetd
forecast the load demand. These approaches caareeatly
classified into two categories in accordance totdohniques
employed. The classical approach of load forecgssoch as
time series method, gray theory and least squathaue are
based on similarity in forecasting of future povead curve
by using the foregone information [2]. The more ermtc
approaches for load forecasting are based on adifi
Intelligent (Al) technique. Realizing that the dlézal energy
load pattern is heavily dependent on the non-lineaiables
such as temperature and weather, therefore the tasknin
the Al technique is to find a functional relatioislbetween
the nonlinear variables and the system load [3F Tuture
load is predicted by inserting the predicted vdeab

information into the predetermined functional reaship.
One of the Al techniques that are commonly used for
performing load forecasting task is the Artifichdural

Network (ANN). ANN is a computational tool inspiréy the
network of neurons in biological nervous system.islta
network consisting of arrays of artificial neurotisked
together with different weights of connection. Thates of the
neurons as well as the weights of connections antbam
evolve according to certain learning rules [3].ofther word,
neural networks are nonlinear statistical modetows which
can be used to find the relationship between immat output
or to find patterns in vast database. ANN has tegggiied in
statistical model development, adaptive control tesys
pattern recognition in data mining, and decisiorkimg under
uncertainty [4]. It is able to learn how to perfoampattern
recognition task by automatically changing the ealwf its
weights. Since the past few decades, different stypé
learning algorithms for the ANN have been developsd
many researchers. For instance, Hebbian learnind an
competitive learning were developed for unsupediise
learning, while Least Mean Squares (LMS) and Back
Propagation (BP) of error algorithms were develoged
supervised learning [5]. Artificial Immune Systel$) has
emerged in the 1990s as a new branch in Artificitglligence
and since then AIS has been used in various apiplisasuch
as pattern recognition, fault detection, computmusity and
optimization [6]. The basic fundamental of the A$Snspired
from the vertebrae immune system. The natural imemun
system is an interesting subject from the computati
perspective as it is distributed, diverse, selfamiging with
recognition, learning and memory capabilities [7].

A. Biological Immune Pathology

According to the difference of pathological meclsams
immune diseases can be categorized as the following
(1)Immunodeficiency: When the performance of thenume
function is poor or completely out of work becawdennate
genetic deficiency or acquired deficiency fromuisshurt, the
body is abnormally prone to severe inflammation &ndor
symptom. (2)Hypersensitivity: Immune memory will
produced after the first immune response, whersyséem is
intruded by the same antigen for the second tinme, t
functional disorder of the body or self-destroyinfy tissue
cells will probably arise, such is called hypersernsy.
(3)Autoimmunity: Long-term inflammation, physicalné
chemical factors can activate T and B cells thapoed to
self-antigens to produce immune response towards se
tissues. During this course antibody killing seHlls and
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hypersensitive lymphocytes will appear. Of the abdhree
immune diseases, immunodeficiency has no killifgatfon
biological system, while autoimmunity and hypersgvrity
will exert killing effect on biological system, and called
immune injury or allergic reaction. According to eth

selection algorithm will suffer defense deficieranyd will fail
to identify certain attacks and insecure operatidrigen the
security system will probably develop “immune talece” to
certain attacks, and security “vacuum phenomendh’avise.
(2) Security threats from hypersensitivity Thesecusity

difference in immune mechanism, immune injury cam b problems are similar with type immune allergic reaction in

classified into

immune system, if the threshold value of negatigkection
algorithm is inappropriate, many detectors withf seitibody
and Kkilling effect will be released into securitysem. These

Type immune allergic reaction is also called improper detectors will produce abnormally frequertiack

anaphylaxis. Since it takes place with high speedfesponses and the system resources will be haynékien up
it is also to react to these false attacks. A typical attackthod of

hypersensitivity is DoS (denial of service) attaBlecause of
Type immune allergic reaction is a kind of the complexity in user behavior and operationhé tletector
immediate hypersensitivity. analyzes valid user activity with different opengtimode or
network packets with different protocols, the deies will
probably produce frequent intrusion responses. HE t
combination of antibody with antigen on the suspicious_ valid activities exceed certain amothg, security

gystem will deny the access of these operations emh

surface of target cells. The antigens can be th ; .
cell membrane and outer antigens or Semi_destroy software and hardware devices. (3)Sectiitgats

anigens on the surace of th cells This ype off ST UGNty Tris knd of securty probiems e
allergic reaction will lead to cell injury with piex, y

different mechanisms and thg symptom of these security problems vargtbyr.eThe

' essential part in security system is the negatiekection
Type immune allergic reaction is also called algorithm, and the self-matching unit in the algun is also
immune complex mediated hypersensitivity. essential in detector selecting. If self properties incomplete
Immune complex is the generated with thein the self library, many detectors with self anty will be
combination of antigen with antibody, thesereleased for duplicating. These abnormal detectoase
immune complex will immediately cleared off by mistaken matching mechanisms with normal activitée=l
phagocyte cells. Yet, if the immune complex valid operation. They will accept attack or invabigeration,
deposits on the blood vessel and leads to sevevhile identify valid operating as dangerous onest ke self-
vessel inflammation, immune diseases will arise.destroying in biological immune system, the segusiystem
The antigens that will lead to immune complexwill deny normal operation and even take killingi@gs on
mediated hypersensitivity vary in type and System software and hardware [17-20]. To solve aheve

Type immune injury,

Type immune allergic reaction is also called cell
toxin antibody reaction. It is related with the

property.

security problems and system flaws, we can intredother
artificial intelligent methods into AlS, such asoasionary

* Type immune allergic reaction is also called ygorithms. With the intelligent optimizing methodn

lagging hypersensitivity; it is related with allgrg
causing T cells.

In Type immune allergic reaction, phagocyte celie a
usually the basic effecting immune cells. In ceidiated cell
toxin reactions, allergy causing T cells have hdlieffect and
will exert killing effect on the target cells.

B. Influence of Immune Pathology on AIS

Artificial immune system introduces the supericoggerties
of biological immune system into the study of ihiggnt

evolutionary algorithms, we can improve the setactiof
detectors and avoid the problem of immunodeficieacyl
autoimmunity. In the meantime, biological treatmeot
immune pathology can also be an approach to avoidas
security problems and system flaws in artificial mome
system. For example, medicine interfering is aredife
method in immune treatment; similarly, in artificisnmune
system, we can also adjust the system operatingparameter
selecting to improve the efficiency and precisenesshe
system.

system, but the disease-causing mechanism of immune

pathology has been transmitted into artificial inmawsystem
too. With the development of attacking techniqules,security
problems from immune pathology have been more aock m
sever. Taking artificial immune security systenaasxample,
we analyze the security problems and system flawsected
with immune pathology in artificial immune systerfihe
security problems of from immune pathology can besified
as the following: (1) Security threats from immustidiency
This kind of threats can be found in the followicases: if the
attack properties in detector string are innatatomplete or
mistaken under attack, the detectors generated eigative

[I. ADAPTIVE IMMUNE L EARNING M ODEL

A. Tri-tier Immune Model of Artificial Immune System

The adaptive immune tier is the second tier of tiidier

immune model for the artificial immune system, dhd first
tier is the innate immune tier and the third terthe parallel
immune tier [25-27]. The innate immune tier is coisgd of
two modules. The first module is used to detectsiiés and
the non-selfs in the system that the artificial inma system
protects. The second module is used to recognizdetitures
of known non-selfs and classify the types of theviam worms.
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The adaptive immune tier is comprised of two moslulEhe
first one is used to learn features and types efuhknown
worms with the knowledge about all the known worke
second is used to eliminate the non-selfs that detected.

B. Model for Learning Unknown Worms

The model for learning unknown worms is comprisédhe
feature space of known worms, the algorithm fodieg the
features of non-selfs, the algorithm for searchihg most
similar non-self, the unknown worm that is beingagnized,
and the result set of learning. Model for learningknown
worms Algorithm for reading features of non-selfig@xithm
for searching the most similar non-self Unknown mvdhat is
being recognized Result set of learning Featureespéall the
known worms Normal model Suppose the feature difoans
of the known worm is q , the feature vector of tloa-self ¢ is
denoted with, then the feature space of all thenknavorms is
represented. For the unknown worm c, p-dimensiatufes
among its features are measured, and the knowuarésaare
represented with , but the other features are unkn8uppose
the most similar known worm to the unknown worm tise
algorithm for searching the most similar worm isnoted
with, then the process for learning the unknownnvaan be
represented.

In the process for learning the unknown worm, tbe-gelf is
classified into the type of the most similar knowarm to the
unknown one, according to the feature vector ofuthlenown
worm. The types of known worms are known and theuwar
of the known worms is limited. However, the unknowarm
cannot be classified into any type of known worars] a new
type must be created for the unknown one at tiat.t\With
creation of new type repeated, the types of unknewrms
may be unlimited but numerable. The dimension cioeatd of
the feature space for the worms is represented siithll balls
are used to denote the non-selfs, and the bigesingpresent
the type of the worms.

We consider the following Immune field equationdired
over an open bounded piece of network and /or featpace

(3= @

It describes the relation between the input rate of
population i as a function of the packets potential, for
example,V, =v = §o (V- H]. We noteV the p-
vector (Vy,...,V,). The p

dimensional function
qq,i =1,...,p, represent the initial conditions, see below. We
note ¢ the p— dimensional vecto(q, ..., )- The p
function Iie”,i =1,...,.p, represent external factors from
other network areas. We note™ the p— dimensional
vector (17,...,| g’(t). The px p matrix of functions
I={I} -0 the
populations i and |, see below. Thep real values

represents connectivity between

h,i=1,..,p, determine the threshold of activity for each

population, that is, the value of the nodes poatnti
corresponding to 50% of the maximal activity. Tigereal

positive valuesO'i,i =1,...,p, determine the slopes of the
sigmoids at the origin. Finally the real positive values
l,i=1,..p, determine the speed at which each anycast
node potential decreases exponentially towardeigd value.
We also introduce the functio®: R —» R, defined by
S(¥ =[%a,( x= ).... Io,— )], the
diagonal px p matrix L, =diag(l,...,1,).Is the intrinsic
dynamics of the population given by the linear cese of

and

d d
data transfer(aﬂi) is replaced b)(aﬂi)z to use the

d
alpha function response. We uﬁ%—tﬂi) for simplicity

although our analysis applies to more general risiti

QOR. They describe the dynamics of the mean Immunelynamics. For the sake, of generality, the propagalelays

of each of p node populations.
(NN =3 ]9, (CDSIV (=7 (R0, ldT

+ Iiext(r ,t),
Vi(t.r) =g(t.r)

1
t=0,1<i <p, M

tO[-T,0]

We give an interpretation of the various parametans!
functions that appear in (X, is finite piece of nodes and/or
feature space and is represented as an open bosetiexf
RY . The vectorr and r represent points in Q . The
function S: R (0,1) is the normalized sigmoid function:

are not assumed to be identical for all populatitvence they

are described by a matrix(r,r) whose element;; (r.r)is

the propagation delay between populatign at r and

populationi at I'. The reason for this assumption is that it is
still unclear from anycast if propagation delayse ar
independent of the populations. We assume for teahn

—2
reasons thatf is continuous, that i JC°(Q", R”P).

Moreover packet data indicate thatis not a symmetric
function i.e., 7; (r,r)#7, ( ), thus no assumption is

made about this symmetry unless otherwise statedrder to
compute the righthand side of (1), we need to ktlmsvnode
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potential factorV on interval[—T,0]. The value ofT is

obtained by considering the maximal delay:
I,= max 7. ( r) (3) the same constarR if | =max_

Theorem 1.0 All the trajectories are ultimately bounded by

ext
R* ! (i‘F <.

Proof: Let us defined f:RXxC - R as

i,j(rroQxQ)

Hence we choosé =7,
def

M) =(-LVM O+ LS+ F(), (1) =

C. Mathematical Framework 2 dt
A convenient functional setting for the non-delayeaicket ~We notel =min,_; /1,

field equations is to use the spake= L*(Q, R”) which is a

Hilbert space endowed with the usual inner product: f(tV,)< —I”\/ (t)”i +(y/ p|Q| || J”F + I)||V(t)||F
(V,uU), j V.(NU, (Ndr (1) Thus, if FH 1 2
|R def
To give a meanmg to (1), we defined the historyacep HV(t)H 22°————— R’ f(tVY)s-——-=-9<0

C=C°([-7,,0l, F) with |@=sunq, q]@t)F,
which is the Banach phase space associated wititiequ3).  Let us show that the open route Iof of center 0 and radius
Using the notationV,(6) =V(t+8),00[-7,,0], we R, B, is stable under the dynamics of equation. We know

write (1) as thatV/ (t) is defined for allt 2 0s and thatf <O on 0B,
V(t) =-L,V(Y) + LY+ (Y, ) the boundary ofB;. We consider three cases for the initial
V, =@0C, condition \ If ”Vo”C <R and set
Where T =sup{t |Os0[0,t],V(90 B}. Suppose thal OR,
L :_C - F L thenV (T) is defined and belongs IB_R, the closure ofBg,
¢~ J.Q I e, — (r)pr because B_R is closed, in effect toaBR, we also have
Is the linear continuous operator satisfying g

||L1|| < ||J||L2(QZ reeey - Notice that most of the papers on this ”V” hr= T(T,V;)< -5 <0 becauseV(T) OB,

subject assum€ infinite, hence requiring’,, = . Thus we deduce that fore>0 and small enough,
V(T + &)U B; which contradicts the definition of T. Thus

Proposition 1.0If the following assumptions are satisfied. TUR and By is stable. Because <0 @B,V (0)L0 B,

1. JOLA(Q?% R™P), implies that(Jt >0,V (t) B, . Finally we consider the case
2. The external current™ OOC°(R, F), V(0)O CE . Suppose that [t>0\V (t)DE, then
0/~2 X d 2 . .
3. rOC(Q%R p),SUpQ—z TsT, Ot >O’EMF <-29, thus ||V(t)||F is monotonically
Then for any @lIC, there exists a unique solution decreasing and reaches the value of R in finitee tiwhen
V OCY([0,»), F)n C°([-T,,,%, F) to (3) V(t) reaches0By. This contradicts our assumption. Thus

Notice that this result gives existence &), finite-ime 0T >0|V(T)O B;.

explosion is impossible for this delayed differahg&quation.

Nevertheless, a particular solution could grow firdeely; we  proposition 1.1 : Let S andt be measured simple functions
now prove that this cannot happen. X i
on /- for EEM, define

D. Boundedness of Solutions

A valid model of neural networks should only feattwounded AE) = _[ sdu @
packet node potentials.
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Then @ is a measure oM . | f(2) —( Z)| < w(9), 3
[(s*vdu=] squ+[ tou (2) 09)(2)| < 2X°) (4)
Proof : If S and if E, E,,... are disjoint members of And o
whose union isE, the countable additivity ofz shows that
o= [[wa  «=c+n @

HE) =Y au(An =Y a> u(An E)

Where X is the set of all points in the support @ whose

© N 0 distance from the complement &f does notd . (Thus X
= Zzai:u(A n Er) =2« Er) contains no point which is “far withinK .) We construct®
rzl_'al r=t as the convolution off with a smoothing function A. Put
Also,¢(¢) ~ ' so that¢ is not identicallyo . a(r)=0if r >9,put
Next, let S be as before, lef3, ..., 3, be the distinct values
—fy — — 2
of tand letB, ={x (¥ =4} If EE=An B, the alr) = 3 1_r_2 0<r<d 6
[ (s+0du=(a +B)uE) e o |
E; H=4 i I% And define
and J'E_ sd,u+J'E_ tdu=au(E)+Bu(E) Thus 2 A= al 2 (7)

Il J . ! .
holds with E; in place of X . Since X is the disjoint union For all complexz..Itis clear thatAsC, () . We claim that
of the setsE; (1<i<n,1l< j<m), the first half of our J. A=1, (8)

RS
proposition implies that (2) holds.
0A=0, (9)
I
Theorem 1.1: If K is a compact set in the plane whose
24 2
complement is connected, if is a continuous complex H|a = < (10)

155 o'
function on K which is holomorphic in the interior of , and if R

£>0, then there exists a polynomiaP such that _ ]
The constants are so adjusted in (6) that (8) ho{@ompute

| f(2)=H z)| <¢ forall Z£K If the interior of K is e integral in polar coordinates), (9) holds siyripécauseA
empty, then part of the hypothesis is vacuouslisfiad, and  has compact support. To compute (10), expt¥sn polar
the conclusion holds for every £C(K) . Note that K need coordinates, and note thgé/ -0,

to be connected. 00
Proof: By Tietze's theorem,f can be extended to a aé/ =-a,

continuous function in the plane, with compact sarhpWe or
fix one such extension and denote it again foy For any
0>0, let aO0) be the supremum of the numbers

|f(22)_ f(21)| Where z and z, are subject to the Since f and A have compact support, so do®s Since

Now define

o@)=[[ f(z=O)AE =[] Az0) ) d 4 QY
R? R

condition|z2 - 21| < 0. Since f is uniformly continous, we ®(2)- (2

have g[rg)a(é) :0 (1) From now on,5 will be :J‘J‘[f(z_z) _ f( 3] AE) d;( d] (12)
fixed. We shall prove that there is a polynomialsuch that R?

And A({)=0 if |{|>0, (3) follows from (8). The
|f(z)— P(Z)|<1O,OOOC4)6) (z K) (2 difference quotients of A converge boundedly to the
By (1), this proves the theorem. Our first obietis the  qrresponding partial derivatives, sindeC_(R’) . Hence

construction of a functioP£C, (R?), such that for allz the last expression in (11) may be differentiatedien the
integral sign, and we obtain
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©0)(2) = [[0A(z-¢) f({) & a
=[[1(z-0)@OA) &

=[[[f(z-0) - f(AOAD) E o @3

The last equality depends on (9). Now (10) and ¢ig¢ (4).
If we write (13) with®, and <Dy in place ofd®, we see

that @ has continuous partial derivatives, if we can sttioat
09 =0 in G, where G is the set of allz£ K whose

distance from the complement #f exceedsd. We shall do
this by showing that

(2= 1(2 (=G; (14)
Note thatdf =0 in G, since f is holomorphic there. Now
if z£G, thenz—{ is in the interior ofK for all { with

|Z|<5. The mean value property for harmonic functions

therefore gives, by the first equation in (11),

o@)=[ AN f(z- &) &

=27rf (z)jja(r)rdrz f(z)jj A= (2 (15)
R

Let Q be the complement o, [1...00 E,. ThenQ s an

open set which containsK. Put X, = Xn D, and
X;=(XnD)-(X0...0X_),for2<j<n,

Define

RC.2=QE. 2 (X Q)  (19)

And

F(2)= [[OO)ORE. A& & (20)
(z € Q)

Since,

FR=Y [0 3¢ d, (2

(18) shows thatF is a finite linear combination of the
functions g; and gjz_ Hence FeH (Q). By (20), (4), and

(5) we have

|F(z)—¢(z)|<%ﬂ| RC.

—Idc‘dﬂ (ze Q) (22)
z-¢

Observe that the inequalities (16) and (17) arelwith R in

For all z& G, we have now proved (3), (4), and (5) Theplace ofQ; if { & X andz & Q.Now fix z& Q., put

definition of X shows thatX is compact and thaXK can be
covered by finitely many open disds,,...,D, , of radius

20, whose centers are not ifK. Since S*°— K is

connected, the center of eaEhj can be joined teo by a
polygonal path inS? — K. It follows that eachD; contains a
compact connected sEj, of diameter at leas?od, so that
— E is connected and so th& n E; =¢  with
r =20. There are functionngH(S2 — E) and constants

b, so that the inequalities.

Q2«2 (16)

Q,(¢.2)- }ZI 4, ooas )
Hold for z[J E andZDDj,
Q({.2=9(2+(-h) §( 18)

{ = Z+pé5, and estimate the integrand in (22) by (16) if
P <40, by (17) if 40< p. The integral in (22) is then
seen to be less than the sum of

2] (5—0+—1}0dp: 808w (23

And

2”f454 0005* 2 pdp=2,0000 . (24
Hence (22) yields

|F(2)-®(2|<6,00w @) (ze Q) (25

since F £ H(Q), KOQ, and S*— K is connected,

Runge's theorem shows that can be uniformly

approximated orK by polynomials. Hence (3) and (25) show
that (2) can be satisfied. This completes the proof

Lemma 1.0 : Suppose f&C (RP), the space of all

continuously differentiable functions in the planwith
compact support. Put

10,0
= 2(6X+| 6yJ @

Then the following “Cauchy formula” holds:
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=L
(§=¢+in) (2)

Thus, a monomial is i if and only if it is divisible by one

ofthe X*,a] S
PROOF. ClearlyA satisfies(D) ,anda ] < X? |30 A> :

Proof: This may be deduced from Green's theorem. Howeveigonyersely, if S0 A, then f—a 00" for somea 0SS,

here is a simple direct proof:
Putg(r,0)=f (z+r€’), r>0,8 real
It ¢ =z+rd?, the chain rule gives

a i0
+r—ﬁ}¢(r,9) 3)

1,
0f)({) =§e"[—
The right side of (2) is therefore equal to theitims £ — O,

or
of
1o con(d i 09
_= 99 2% l4od 4
AN (6r raaj ' “)

For eachr >0,9 is periodic in@, with period 277. The

integral of 0@ / 08 is therefore 0, and (4) becomes
1 2 00 a¢ 1 27T

-—— | dé| —dr=— £,6)d6 5
o, 48], S -dr=—"[ "¢(c.6) (5)

As & - 0,¢0(£,8) —» f (2) uniformly. This gives (2)

it X?0Oa and XPOK[X,...X]

XTX# = X*# 0 a, and soA satisfies the conditioff[) .
Conversely,

Qe XN dX)=> ¢ X7
atA A" ap

, then

(' finite sumg

and so if A satisfies([) , then the subspace generated by thefFHEOREM  1.2.

and X? = X X?“ [0 a. The last statement follows from

the fact thatX? | X# = B—aO0". Let AOD" satisfy
(D) . From the geometry ofA, it is clear that there is a finite
of A such

set of elements S:{al,..as} that

A:{,BDD "|B-a, 002, somea, [ %3 (The a;'s
df
are the corners ofA ) Moreover, a:<X“|aD A> is

generated by the monomial “ ,a; US.

DEFINITION 1.0. For a nonzero ideala in
k[ ) ST Xn] , we let (LT (@) be the ideal generated by

{LT(f)| fO4}

LEMMA 1.2 Leta be a nonzero ideal irk[ ) ST Xn]
then (LT(Q)) is a monomial ideal, and it equals
(LT(g),...,LT(q,)) for somegq,,...,g, D a.

PROOF. Since(LT(a)) can also be described as the ideal

generated by the leading monomials (rather thanehding
terms) of elements ofl.

Every ideal a in k[Xl,...,Xn] is

monomials X?,a@ ] a, is an ideal. The proposition gives a finitely generated; more preciselﬁ.:(gl,...,gs) where

classification of the monomial ideals kl[ Xl,...Xn]: they

are in one to one correspondence with the sub8ets [ "
satisfying (0) . For example, the monomial idealsl'ﬂ{ X]

are exactly the ideal{X"), Nn=1, and the zero ideal

(corresponding to the empty 9&). We write<X” |a O A>

0,)..-,0; are any elements oA whose leading terms

generateL T (a)

PROOF. Let f [Ja. On applying the division algorithm,
we find
f=ag+.+tag+r, a, roK X,.... X]

where eitherr =0 or no monomial occurring in it is divisible

for the ideal corresponding tA\ (subspace generated by the by any LT(g) " Butr=f _Zaigi Oa, and therefore

X%, alOa).

LEMMA 1.1. Let S be a subset dfl ". The the ideaid

generated by X?,a0S is the

corresponding to
df

A:{,BDD "|B-alO0", someal %S

monomial ideal

LT(r)ULT(&) =(LT(g),..., LT(Q)) , implies that
every monomial occurring inf is divisible by one in

LT(g). Thusr =0,andg(g,..., Q).
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DEFINITION 1.1. A finite subsetS={ g,]..., g} of an

ideal @ is a standard (Grébner) bases fora if
(LT(g),....LT(q))= LT(8. In other words, S is a
standard basis if the leading term of every elen@n@ is
divisible by at least one of the leading termshef @; .

THEOREM 1.3 The ring K[ X,, ..., X.] is Noetherian i.e.,
every ideal is finitely generated.

PROOF. For n=1, K[ X] is a principal ideal domain,

which means that every ideal is generated by siatgment.
We shall prove the theorem by induction Bn Note that the

obvious map K[ X,,...X ][ X]] - Kk X... X] is an

isomorphism — this simply says that every polyndnfiain

in a of degreed; it is again an ideal in A . Let

(S FETREPM ¢ Fy be polynomials of degre€l whose leading
coefficients generat@,. Then the same argument as above
shows that any ponnomial;d in @ of degreed can be
written f, = f mMod@g; .-Gy ) With fy, of
degree< d —1. On applying this remark repeatedly we find
that f, 09,13 ---Or-1m , ++-Jo1r--Yom, . HENCE

f 009 On D11 G1m, +-1G01 -+ Gom,

and so the polynomialg,, w1 Qom, generatea

One of the great successes of category theory mpuater
science has been the development of a “unifiedrifiexs the
constructions underlying denotational semantics. the

untyped A -calculus, any term may appear in the function

N variables X,,...X, can be expressed uniquely as gPosition of an application. This means that a mdalelf the

polynomial in X, with coefficients ink[ X, ..., X_]:

F(Xproe X )= 8 (Koo X ) X+ o @ (XX

Thus the next lemma will complete the proof

LEMMA 1.3. If A is Noetherian, then so also & X]
PROOF. For a polynomial

f(X)=g,X"+aX*+..+a, al A az0,
r is called the degree of , and a, is its leading coefficient.

We call 0 the leading coefficient of the polynomi@l
Let & be an ideal iny X] . The leading coefficients

of the polynomials in@ form an ideala in A, and sinceA

is Noetherian,a' will be finitely generated. LeQ,,...,J,, be

elements ofa whose leading coefficients generaié and let
r be the maximum degree of, . Now let f Oa, and
suppose f has degreeS>r, say, f =aX®+... Then
alJa , and so we can write

a=) ha, bO A

a =leading coefficient of ;g

Now

f —ZQ g X7 [ =deg(g )has degree<deg(f ).
By continuing in this way, we find that
f =1, mod(g, ,..0,, ) With f, a polynomial of

degreet <r For eachd <r, let &, be the subset oA
consisting of 0 and the leading coefficients ofpallynomials

A -calculus must have the property that given a terwhose
interpretation is d[J D, Also, the interpretation of a
functional abstraction likeAX . X is most conveniently
defined as a function frorDtoD , which must then be
regarded as an elementf Let(/l:[D - D] — D be the
function that picks out elements Bfto represent elements of
[D - D] and ¢:D - [D - D] be the function that
maps elements oD to functions ofD. Since () is
intended to represent the functidn as an element db, it
makes sense to require thag(((f))="f, that is,
yoy= id[DﬁD] Furthermore, we often want to view every

element ofD as representing some function franto D and
require that elements representing the same funttoequal
—that is

W(g(d))=d
or
Yogp=id,

The latter condition is called extensionality. Tee®nditions
together imply thatpandy/ are inverses--- that i is
isomorphic to the space of functions fr@rno D that can be
the interpretations of functional abstractioB:D[D - D]

.Let us suppose we are working with the untyped
A-calculus, we need a solution ot the equation

DDA+[D—> D], where A is some predetermined

domain containing interpretations for elementsGf Each
element ofD corresponds to either an element/for an

element of[D - D], with a tag. This equation can be
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solved by finding least fixed points of the functio

exists a unique mediating arrok: X — X such that for

F(X)= A+[ X X] from domains to domains - that g i 20,40k=V, . We write J, (or just ) for the

is, finding domainsX such thatX [] A+[ X - X], and

such that for any domaivi also satisfying this equation, there

is an embedding of to Y --- a pair of maps
f

X [ vy
fR

Such that

fRof =id,

fofROid,

Where f [1g means that f approximatesin some

ordering representing their information contente ey shift
of perspective from the domain-theoretic to the engeneral
category-theoretic approach lies in considerfhghot as a
function on domains, but as fnctor on a category of
domains. Instead of a least fixed point of the fiomg F.

Definition 1.3: Let K be a category anfF : K - K as a
functor. A fixed point ofF is a pair (A,a), where A is K-

object and @: F(A) - Ais an isomorphism. A prefixed
point of F is a pair (A,a), where A iskxobject and a is any
arrow from F(A) to A

Definition 1.4 : An w—chain in a categorK is a diagram

of the following form:
f, f f,
A = DO —> D]_ —> D

Recall that a cocong/ of an w—chainA is aK-object X
and a collection of K—arrows{,ui D - X]i2 O} such
that t4 =f4,,0f for all i=0 . We sometimes write

MDA - X as a reminder of the arrangement Af'S
components Similarly, a colimit/: A — X is a cocone with

the property that iV : A - X' is also a cocone then there

exists a unique mediating arro: X — X' such that for all
i>20,,v; =k o . Colimits of w—chains are sometimes

referred to agv—colim its. Dually, ana/® —chain in K

is a diagram of the following form:
fo 1:l 1:2
A=D, DDy oo A cone U: X - A of an
af® —chain A is aK-objectX and a collection oK -arrows
{#:D iz 0 such that for ali 20, £ = f 04,,. An

¢f® -limit of an o/ —chain A is a coney/: X - A

with the property that iV : X' = Aisalso a cone, then there

distinguish initial object oK, when it has one, andl—» A

for the unique arrow froni] to eachK-object A. It is also
f1 fZ
convenient to writeA” =D, _, D, _, .....to denote all of

A exceptD, and f,. By analogy, 4™ is {,ui [i= ]} For

the of A and g under
F(f,) F(f) F(f,)

F(8)=F(D,) , F(D) ,F(D,) ...

and F (1) ={F (1) i =2 ¢}

We write F' for thei-fold iterated composition df — that is,

Fo(f)=f,F (f)=F(f),F*(f)=F(F(f)) et

With these definitions we can state that every momic
function on a complete lattice has a least fixeuhipo

images F  we write

Lemma 1.4. LetK be a category with initial objedt] and let
F :K - K be a functor. Define théev—chainA by

0~ F(D) F(O-F(D) F?(0-F(D)
A=0 _, F(O) _, FX0O) _ .
If both H:A - D and F(u):F(A) - F(D) are
colimits, then (D,d) is an intial F-algebra, where

d: F(D) - D is the mediating arrow fronk (4) to the

coconeld

Theorem 1.4 Let a DAG G given in which each nodea is
random variable, and let a discrete conditionalbphility
distribution of each node given values of its ptsen G be
specified. Then the product of these conditionatridiutions
yields a joint probability distribution P of the nables, and
(G,P) satisfies the Markov condition.

Proof. Order the nodes according to an ancestral ordeliety.
) OTD, CH. X, be the resultant ordering. Next define.

POG %,--%)= R Pg) R | Fa)-
P | p3)Rx| P,

Where PA is the set of parents ofX; of in G and

P(x | pa) is the specified probability
distribution. First we show this does indeed yigldjoint
probability distribution. Clearly,0SP(X,X,,...X )< 1 for

all values of the variables. Therefore, to showhage a joint
distribution, as the variables range through adlirtipossible
values, is equal to one. To that end, Specifiedditimmal

conditional
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distributions are the conditional distributionsytheotationally
represent in the joint distribution. Finally, we osh the
Markov condition is satisfied. To do this, we nesttbw for

1<k <n that

P(pa)#0,if P(nd | pa)# O
whenever and R x| pg)# 0

then R x| nd, pg)= R x pa.
Where ND, is the set of nondescendents ¥, of in G.
PA 0O ND,
P(x. Ind)= R x| p@). First for a giverk, order the

nodes so that all and only nondescendentXgprecede X,

Since we need only  show

in the ordering. Note that this ordering dependqrwhereas
the ordering in the first part of the proof does. iitlearly then

NDk :{Xl, Xz,....)(k_l}
Let
D :{xk+l,Xk+2,....Xr}

k
follows Z
dy

We define the m™ cyclotomic field to be the field
Q[X]/((Dm(x)) Where ®,_(X) is the m" cyclotomic
polynomial. Q[x]/((Dm(x)) ®_(X) has degreeg(m)
over Q since ®@_(X) has degreeg(m) . The roots of
®_(X) are just the primitivem” roots of unity, so the
complex embeddings oQ[X]/(CDm(X)) are simply the
@ (M) maps
0,:Q[{/(® () G
1<k=<m,(k,mM=1 wher

o, () =¢&x,
fm being our fixed choice of primitivelsnth root of unity. Note
that &<OQ(E,) for every Kk it follows that
Q(&,) =Q(X) for all k relatively prime tom . In
particular, the the 0,
Q[X]/((Dm(x)) is Galois overQ. This means that we can
write Q(&,,) for Q[X]/(CDm(X)) without much fear of

ambiguity; we will do so from now on, the identtion being

images  of coincide, so

fm > X.One advantage of this is that one can easily talk
A

10

about cyclotomic fields being extensions of onetlargor
intersections or compositums; all of these thinaiset place

considering them as subfield @. We now investigate some
basic properties of cyclotomic fields. The firsgus is whether
or not they are all distinct; to determine this, mezd to know

which roots of unity lie inQ(¢,,,) .Note, for example, that if
Mis odd, then—¢,is a 2m" root of unity. We will show that
this is the only way in which one can obtain any1-rmth

roots of unity.

LEMMA 1.5
Q)

n
PROOF. Sinceg(%‘n =&, we have &, JQ(¢,), so the
result is clear

If mdividesn, thenQ(¢,,) is contained in

LEMMA 1.6 IfMand Nare relatively prime, then
Q€)= Q¢ )
and
Q&) N AS)=Q
(Recall the Q(¢..¢,) is the compositum of

Q(¢) and Q<) )

PROOF. One checks easily th§té, is a primitive mri"root
of unity, so that

Q&) H QA <)
Q¢ Ql <[ Q[ Q¢ G
=gp(m)g(n) = g(mn);
[Q(&n): Q] = (mn);
Q(£.,.¢,)=Q(,,) We know thatQ(¢&,,<,,) has degree

@(mn) over Q, so we must have

[Q(6, ) : Q€] = 4(D)

Since this implies  that

and

[Q(& &) QUED] = (M)

[Q(£,): Q&) N AE) ]z (M
And thus thatQ(&,) N Q¢,) = Q

PROPOSITION 1.2 For anfnand N

Q& €)= QG )
nd
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n - : input-output pairs of a given channel is the averagutual
Q) 0 Q<) Qf(m,)) information:
here[m, n] and (m, n) denote the least common multiple and ( b

ts per
the greatest common divisor @fland n, respectively. 1(X,Y)= Z POX Y) I(x, y)= Z Rx y)log, P(;)/‘ =P

PROOF. Writem= p...... @ and g .... fwhere the symbol . This calculation is done over the inpudl autput
alphabets. The average mutual information. Theovdlg

Pare distinct primes. (We allo& O { to be zero) expressions are useful for modifying the mutuabinfation
Q&) =G ) AS ) QS 0 ) expression:
and PO )= POV, ) RN = RV R
Q&) =<, QS ) QS ) v j
Thus P(y) =3 P4 R0
Q6= QG o) QE o QE 1 )-QE . X
P =
= QU QAE, ) Q) ) (0= R0 IR
Then

= Q(EplmaX(q‘fl)) """ Q GH"‘&X(‘ka ))

1(X,Y)=> P(x, ¥)
:Q(E pman) || ™ )) i

= Q) —ZP(X y)Iogz{P( )}

An entirely similar computation shows that

Q&) N QASH) = A y)

—2.P(X, y)log,| —
Mutual information measures the information transfée t P(Aj)
when X is sent andy is received, and is defined as

(X, ¥)= logz bits ) i X

) . 1
| o = P(y_)P(y,-) log, ——
In a noise-free channedach Y,is uniquely connected to the i Y P(X)

correspondingX , and so they constitute an input —output pawz P( )log, ——
2
(%, y) for which P(x)

P(/) =1 and I(x, y)=log, —— bits; that is, the 1(X,Y)=H(X)- HO%
(x)

1 ,

transferred information is equal to the self-infation that ~Where HO%) Z P(x, Y)|ngT IS
P(Sy)
Yi

corresponds to the inp In a very noisy channel, the output

Y.

S5 - H(X)

Y, and input X would be completely uncorrelated, and sousually called the equivocation. In a sense, thavegation

can be seen as the information lost in the noigynohl, and is
P(% )=P(%) and alsol (X, Y, )=0;that is, there is no a function of the backward conditional probabilityhe
]

. . . ) observation of an output symbol Y, rovides
transference of information. In general, a givearatel will P y i P

operate between these two extremes. The mutuaimation  H (X)) - H(y) bits of information. This difference is the
is defined between the input and the output ofvamgichannel. Y

An average of the calculation of the mutual infotismfor all ~ mutual information of the channeMutual Information:
PropertiesSince
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Py, P = Y1) R

The mutual information fits the condition

1(X,Y) = I(Y, X)

And by interchanging input and output it is alagetthat
= - H(Y

1(X,Y) = H(Y) = H(Y4)

Where
H(Y) = Z A y)log, — P( 5

This last entropy is usually caIIed the noise gmrdhus, the
information transferred through the channel is diféerence

between the output entropy and the noise entropy.

Alternatively, it can be said that the channel multu
information is the difference between the numberbids
needed for determining a given input symbol befarewing
the corresponding output symbol, and the numbembits
needed for determining a given input symbol afteowing

the corresponding output symbol

1(X,Y) = H(X)= H(XK)

As the channel mutual information expression idfeer@nce
between two quantities, it seems that this paranovate adopt
negative values. However, and is spite of the tfet for some

Y;» H(X/y;) can be larger tharH (X) , this is not
possible for the average value calculated ovehalbutputs:

PCY/)

, P(x, ¥)
P(%)

POORY)

2 P(x. ¥)log,
Tyhen

P :
S1(X. ) =Y R(x, x)%s

Because this expression is of the form

ZPlogz(—)<0

=1

=2 P(x. y)log,

The above expressmn can be applied due to theorfact
P(x) ('Y ), which is the product of two probabilities, so

that it behaves as the quant@, which in this expression is

a dummy variable that fits the conditicﬁ)i Q <1l.itcanbe

concluded that the average mutual information isam-
negative number. It can also be equal to zero, vtherinput
and the output are independent of each other. Atael
entropy called the joint entropy is defined as

12

H(X,Y)= ZF’(X y)! gZP(X )

POX) (y)

=S P(x, y)log,
2. P06 y)log 5

1
*2, P00y log, e

Theorem 1.5: Entropies of the binary erasure channel (BEC)
The BEC is defined with an alphabet of two inputs ¢hree
outputs, with symbol probabilities.

P(x)=a and R %) =1-a, and transition
robabilities

y3 =1- yz =
P( Xz) 1-p and K X1) 0,

and R(%3 ) =0

and R )= p

and P(y3 X2) =1-p

Lemma 1.7. Given an arbitrary restricted time-discrete,
amplitude-continuous channel whose restrictions are

determined by setEn and whose density functions exhibit no
dependence on the st&elet Nbe a fixed positive integer,
and P(X) an arbitrary probability density function on

Euclidean n-space. pP(y|X) for the  density
P, (Y- ¥, I%,..% ) and F for F,  For any real
number a, let

{(x y)1log P! )>a} o)
p(y)

Then for each positive integhr, there is a codéu, n,A)
such that

Asue*+ P{(X VO A+ B X0 F (2)

Where
PIOXVOA=[ [ Hxyddy  px)} 6XPl)
and

P{XOF} :L'"f p(x) dx
Proof: A sequenc&™ [0 F such that
P{YOA | X= ¥}21-¢
where A={ y(x ¥ N
Choose the decoding sd8 to be Ax<1> . Having chosen

XY, x*Dand B,,...,B_,, selectx* O F such that
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k-1
P{YD A - Bl X= kk)}zl—g;
i=1

k-1
Set Bk = AW) —Ui:l Bi , If the process does not terminate

in a finite number of steps, then the sequenk(& and
decoding setd,, i =1,2,...1 form the desired code. Thus

assume that the process terminates dftsteps. (Conceivably
t=0 ). We wil show t=u by showing that

e<te®+ P{(X, Y) O /}\+ F{ Xad E We proceed as
follows.

B=Utj:1|3j. (If t=0, take B=g). The
P{(X,)O A= | i xydxdy

(x,y)OA

[ p(yl % dydx

YA

=[P [ Pyl Wdyds| g X

yOBN A

L

"=

X X

E. Algorithms

Ideals. Let A be a ring. Recall that adeal a in A is a
subset such that a is subgroup of A regarded asupginder
addition;

alardA=rald A

The ideal generated by a subseif3\ is the intersection of all
ideals A containing a it is easy to verifiaththis is in fact
an ideal, and that it consist of all finite sumstbé& form

Drs with L OA§0OS. when S={s,
shall write (S,
Let a and b be ideals in A. The s{el+ b|al a bl l} is

an ideal, denoted bya+b . The ideal generated by
{ablaDa,l:Dl} is denoted by ab Note that

abl an b. Clearly abconsists of all finite sum§:aibi

'S )for the ideal it generates.

with a Ja and Q Ob, and if a=(q,...,8,) and
b=(h,....R). thenab=(ah,...,ab,...,q h)Let a

be an ideal of A. The set of cosets @fn A forms a ring
Al a,andat> a+ ais a homomorphisng: A— Al a.

The map b @ '(b) is a one to one correspondence
between the ideals of\/ a and the ideals ofA containingd
An ideal p if prime if pZ A and abld p= a por

13

b p. Thus p is prime if and only ifA/ p is nonzero and
has the property thatab=0, bz 0= a= 0,
A/ pis an integral domain. An idedM is maximal if

ie.,

mM#| A and there does not exist an idéglcontained strictly

betweenmMand A. Thus Mis maximal if and only ifA/ m
has no proper nonzero ideals, and so is a fielde watm
maximal = Mprime. The ideals ofAx B are all of the
form ax b, with & andb ideals inA and B. To see this,
note that ifC is an ideal in AxB and (a,b)Jc, then

(a,0)= (a,b)(1,0)J c and (0,b) = (a,b)(0,1)J c. This
shows thatc = ax b with
a={al(a, b0 c some b k
and
b={b|(a bl c some &

Let A be a ring. AnA-algebra is a ring3 together with a
homomorphismi : A — B. A homomorphisnof A-algebra

B — C is a homomorphism of ringg : B — C such that
@(i;(@)) =i.(a) for all all A. An A-algebraBis said

to befinitely generated or offinite-typeover A) if there exist
elementsX,, ..., X, [J B such that every element & can be

expressed as a polynomial in te with coefficients ini (A)
, i.e., such that the homomorphisnﬁ[ X, Xn] - B

sending X; to X is surjective. A ring homomorphism

A - B is finite, and B is finitely generated as an A-
module. Letk be a field, and letAbe ak -algebra. If1Z£ 0
in A, then the magk — A is injective, we can identifk
with its image, i.e., we can regaklas a subring oA . If 1=0

in a ring R, the R is the zero ring, i.eR,={0} . Polynomial

is an

rings. Let K be a field. Amonomialin X,,..., X

expression of the fornX*... X", a [0 N . Thetotal
degreeof the monomial isz a . We sometimes abbreviate it

by X%, a=(a,...)00"

ring k[X ,...,Xn]

2.C o XXy, g Ok a00

With the obvious notions of equality,
multiplication. Thus the monomials from basis

k[Xl,...,Xn] as a K -vector space. The ring

The elements of the

polynomial are finite sums

addition and
for

k[ ) S, Xn] is an integral domain, and the only units in it

are the nonzero constant polynomials. A polynomial
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f(X,,..., X, ) isirreducibleif it is nonconstant and has only Then we define.

the obvious factorizations, ie.f =gh= g or h is * Themultidegreeof " tobe mU"[der )= Qy;
constant.Division in k[ X] . The division algorithm allows «  Theleading coefficient off to beLC(f )= a, :
us to divide a nonzero polynomial into another: fetand g f f

L . _ _ « Theleading monomial of ' to beLM( ' )= X%
be polynomials mk[ X] with g # O; then there exist unique f

« Theleading term of' to beLT(f )= a, X

polynomialsq, I [ k[ X] such thatf =qg+ r with either

: —_ 2 . .
r =0 or deg < degg. Moreover, there is an algorithm for For the polynomlal f= 4XY Z+ .. the m-u|t|degr.ee s
deciding whether f [1(g) , namely, find I and check (1,2,1), the leading coefficient is 4, the leadmgnomial is

2 . . 2 -
whether it is zero. Moreover, the Euclidean aldonitallows XY _Z' gnd the leading tgrm is4XY _Z' The.d|v?5102n
to pass from finite set of generators for an idﬂak[ X] toa algorithm in k[ X xn] - Fix a monomial ordering ifl

single generator by successively replacing each pai - Suppose given a polynomiaf and an ordered set
generators with their greatest common divisor. (9,.--95) of polynomials; the division algorithm then
(Pure) lexicographic ordering (ley. Here monomials are constructs polynomials &,...a, and f such that

ordered by lexicographic(dictionary) order. Moregsely, let f = ag+..+ag+r Where eitherf =0 or no
a=(a,..a)andS=(b,..1n) be two elements df ";

then a > and X% > X# (lexicographic ordering) if, in
the vector differencey — S I[] , the left most nonzero entry

monomial inf is divisible by any ofLT(g,),...,LT(q)
Step 1 If LT(g)|LT(f), divide g, into f to get

is positive. For example, f=ag+h q:L(f)D k{ X )g]
XY?>YZ: XY Z> XY . Note that this isn't LT(q)
quite how the dictionary would order them: it wouit If  LT(g)|LT(h) , repeat the process until

XXXYYZZZz after XXXYYZ . Graded reverse — + ; ; i
lexicographic order (grevlexHere monomials are ordered by f 4% fl (different &) with LT( fl) not divisible by
total degree, with ties broken by reverse lexicpgia LT(gl) . Now divide g, into fl, and so on, until

ordering. Thus@ > if > & >> h,or Y a=>h  f=ag+.+ag+t With LT(r) not disible by

and ina — B the right most nonzero entry is negative. Forany LT(g,),...LT(q) Step 22 Rewriter, =L T (r,) +r,,
example:

XY'Z'> XY Z4(total degree greater) f = + 4 + LT(1)+ dife ) 'S

XYSZ2> X'YZ, ¥ Yz XY ~AGT.ag T LI  (diferent &S )

: Monomial ideals. In general, an ideah will contain a

polynomial without containing the individual terntf the

Orderings on k[xl""xn] . Fix an ordering on the ,,ynomial; for example, the ided = (Y2 — X) contains
monomials ink[ Xl,...Xn]. Then we can write an element Y2 = X3put notY? or X3,

and repeat Step 1 with r, for f

f of k[Xl,...Xn] in a canonical fashion, by re-ordering its h e NiITION 15, An ideal a is  monomial if

elements in decreasing order. For example, we warité ZC XOa= X°0 a
f =4XY?Z+4Z-5X+7X Z .
as all o with c, #0.

f =—5X3+7X2Z2+ AXY2 Z+ 4 2 (ley PROPOSITION 1.3. Leta be a monomial ideal,and let
or A:{a| X0 a} . Then A satisfies the condition
f=4XY*Z+7X*Z-5X+4Z (grevie) aOA BO0"=a+B0 (O Andais thek-
Let zaa X0 k[ ) >§1] , in decreasing order: subspace 01k[ ) S Xn] generated by theX?,a 0 A.
f= a, X% *a X%+, Ay >a,> ..., a,# C Conversely, ofA is a subset of] " satisfying(D), then the
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k-subspace  a of k[X ,...,Xn] generated by some cycle structur¢d,,...,d._ ). The moments onn)

{ X% a0 A} is 2 monomial ideal. follow immediately as
E(C”) = "1 jr <n} (L.2)
PROOF. It is clear from its definition that a mamial ideal ~ We note for future reference that (1.4) can alsawhen in
a is the K -subspace ok[ ) ST Xn] the ‘Zorm n n
X?[]a E[”(Cfm)[m.]J: E[I‘l 4"11}1{2 jm < r} @.3)
generated by the set of monomials it contains. If and )= 1= e
XPOK[ Xpreos X ] Where theZ, are independent Poisson-distribution random

variables that satisff=(Z;) =1/ |
If a permutation is chosen uniformly and at randoom the
n! possible permutations iB,, then the countC{™ of  Themarginal distribution of cycle counts provides a formula
! ) ]

. . . . n .
cycles of lengthj are dependent random variables. The joinf©" the joint distribution of the cycle countsy, we find the

distribution of CM™ = (Cl(”)’___,crg“)) follows from  distribution oijn using a combinatorial approach combined

Cauchy’s formula, and is given by with the inclusion-exclusion formula.
n 1 Sl 1.1 .
P[C™ = =— Nn ¢=1{Z 6= ’}”(.) it (1.1) Lemma 1.8. Forl<j<n,
n 1= = G Sk [ )k -
P =k="7 > (D' @D
for cO0 " . - '

Proof. Consider the selt of all possible cycles of length

L emmal.7 For nonnegative integers j, formed with elements chosen fro{ﬂ.,Z,..n} , SO that

m_m, || | =n | For eachar 01, consider the “propertyG,, of
E[Il'(an))[mjl]:[ﬁ[l-jm}l{i jm < n} (L.) having @; that is, G, is the set of permutation&[] S,
1= A = such that@ is one of the cycles off7. We then have

Proof. This can be established directly by exploiting |G |:(n_ j)!, since the elements L{ﬂ. 2 ﬂ} not in

llation of the formc.™ /¢ =1/(c —m)! wh i
cancellaton or the Tormc, i~ G i): When  must be permuted among themselves. To use thesionku

C; 2 m, which occurs between the ingredients in Cauchy'exclusion formula we need to calculate the tégm which is

formula and the fa|||ng factorials in the momenWrite the sum of the prObab”itieS of the -fold intersection of

- : . , : properties, summing over all sets pfdistinct properties.
m z m . Then, with the first sum indexed by There are two cases to consider. If theproperties are
c=(q,...¢,)007 and the last sum indexed by indexed byr cycles having no elements in common, then the
intersection specifies howj elements are moved by the

d=(d,...,d,)00] i th d _ 1 )
(... 0, )00 via © correspondence permutation, and there af@—rj)!1(rj <n) permutations

d. =c —m, we have , _ , SR , _
i=G~m in the intersection. There af@” / (j'r!) such intersections.
E lll(cjgn))[mjl :Z F{dn) = ¢ ﬁ( q)ml For the cher case, some two distinqt propertiGeenaome
- = L element in common, so no permutation can have tahe
properties, and the -fold intersection is empty. Thus

S =(n-r)i(rj<n)

n n [ml]
3 1{2 ic, = n} i (©)

o2 oral | et [}
x 1 =1(rj €n)
no1q n n 1 . - = ;
:l‘l.ml21{21dj:n—m}”.djd | j'rin! ir!
| J:. J ”d = o =L ( J')' Finally, the inclusion-exclusion series for the ren of
This last sum simplifies to the indicatol(M< n), permutations having exactly properties is

corresponding to the fact that if— M= 0, then dj =0 for

s Ms

j>n—-m, and a random permutation i§,_, must have [T

I1JESPR
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Which simplifies to (1.1) Returning to the originat-check  Error rates

problem, we substitute j=1 in (1.1) to obtain th&tribution of  The proof of Theorem says nothing about the rate of
the number of fixed points of a random permutatior  convergence. Elementary analysis can be useditoagstthis

k=0,1,..n. rate whenb =1. Using properties of alternating series with
[Cl( )= 1 “Z‘,t( ) 1 1.2) decreasing terms, fd{ =0,1,..
PICY=K=7> (1) —. 1.
k!i= ! i( 1 )<‘ [Cl(n)_@ BZ= ﬂ(‘
k! (n-k+1)! (n k+2)'

and the moments (ﬁ?l(”) follow from (1.2) with j =1. In 1

particular, for N= 2, the mean and variance 631(“) are both S kI(n—k+1)!

equal to 1. The joint distribution c(Cl(”),...,Cé”)) for any
1< b < n has an expression similar to (1.7); this too can blt f?Jllows that
derived by inclusion-exclusion. For agy= (G, ..., G, )OO (nD)in+2 <Z‘ PIC"=K-RZ= Hi\ 1), @19

k=0

with m= z iq , Since .
3 1 1 1

() ) ) — P = 1+ + +... ,
P[(an !---’Cén )=¢] [2>1= (n+1)' n+2 (n+2)(n+3) )< (m+ 1)!

b b (1\" We see from (1.11) that the total variation distabetween
_ 1 I +.. 4y, 1 n n
= ” |>§.m (-1) ” i (1.3)  the distributionL(C{™) of C" and the distributiorL(Z,)

>ili=n-m of Zl
The joint moments of the firdd countsC,",...,C{" can be
obtained directly from (1.2) and (1.3) by setting Establish the asymptotics B[A](C(”))] under conditions
My =...= M =0 and (B,,), where
01

The limit distribution of cycle counts Ah(C(n)) - ﬂ ﬂ {C(n) }
It follows immediately from Lemma 1.2 that for eafiked Isisn r+il<js<r,
I e as M=% and Zi:(l’i'/rid)—1:OG_g') as i — o, for some
P[C" =K - F el k=0,12,... g >0. We start with the expression

. k! .

P[T, (Z) =
So thathn) converges in distribution to a random variable P[ﬁ(d“))] :M
P[TOm(Z) = r]

Z, having a Poisson distribution with medd |; we use the

notation CJ(”) —q Z; where Z,[1 B(1/ ]) to describe |_| {1—§(1+ Eio)} 1.1
I<isn i

this. Infact, the limit random variables are indegent. e

Theorem 1.6  The process of cycle counts converges inP[T, (Z) = 1

distribution to a Poisson process [0f with intensity j_l. ad L .
That is, asN — 00, —TeXp{z [log(l+i~ed )-i—ed ]}
i21
(CV,C0 ) =y (22,00 (L1 L
Where the Zj’ j=1,2,.... are independent Poisson- {1+O(n ¢{1Y217}(n))} (1.2)
and
distributed random variables witfe(Z; ) =—:!' P[T,.(Z)=1

Proof. To establish the converges in distribution onewsho _ Y &d exp z [log(L+i 16 )i 10d ]
that for each fixed b=1 as N - oo,

P(C",...G")=d -~ A(Z... %)= ¢ {1+O(n-1¢{1,2,7}(n))} (1.3)

i=1
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Where ¢{'1'2‘7} (n) refers to the quantity derived frod . It

thus follows thatP[ A (C™)] 0 Kni?“™® for a constant
K, depending onZ and ther, and computable explicitly
from (1.1) — (1.3), if Condition§ A,) and (B,,) are satisfied
and if ZiD:O(i_g‘) from someg >0, since, under these

circumstances, bothn_1¢{'1'2'7}(n) and n‘l¢{1’2’7}(n) tend

to zero asN — oo, In particular, for polynomials and square <

the
approximation is of ordeh

free polynomials, relativeerror in this asymptotic

it g >1.

ForOsb<n/8andnz=n,, with n,

dry (L(CIL b)), (7L, )

< dy, (L(CIL B), (7L, 1))

= ‘9{77} (na b)1

Where £, » (n,b) = O(b/ 1) under Condition{ A), (D,)
and (B,) Since, the Relation,

by Conditioning

L(CILb]| T,y (O = )= L(ZL B] T, (2= ),

It follows by direct calculation that

dr, (L(CIL b), L(ZL, )
= doy (L(Tou(O)). UTou( D))
=max)_P[T,,(2)= 1]

} (1.4)

P[T,.(2 = n— 1§
Suppressing the argume#t from now on, we thus obtain

-
PT,.(2) = 1
d,, (L(CIL b)), L(ZL, 1))

e
s;m P[T,, =1] ﬁg%
X{SE:;,F’[T%:S]( RT,= b Pg= n]}+
S Y PT, =1+ AT, =

17

2]

3 _glPL,=n-4-R L=}
ST P[T,, = 1
[n/2]
+ 2 PT, =1 > AT=3$PT,= rl¢ PE=1r
s[ 2]+l

The first sum is at mos2n*ET,, ; the third is bound by

(max P[Ty, = s])/ HE, = 1

n/2<s<n
2‘9{10.5(1} (n/2,b) 3n
n eP[o 1]’
3n _
m 241503(”)2 AT = f]z RT= % \ - &
<1 10. (n)%
© 6R[0,] n
Hence we may take
64/, ()

&, .(nb)=2n"E 141082
{7,7}( ) -Eb ( Z) QPH[O,].]
8 . (n/2b) (1.5)

BR,[0,1] TosE T '

Required order under Conditior{sd,),(D,) and (Bn)

S(0) < 0o If not, (zﬁo_a (n) can be replaced bgtfo 1

in the above, which has the required order, wnhthﬂ

restriction on thef, implied by S(00) <co . Examining the
Conditions (A,),(D,) and(B,,),it is perhaps surprising to
find that (B,,) is required instead of juftB,,); that is, that
we should ”eeolzml‘gn =0(™)

a >1. A first observation is that a similar problemsas

to hold for some

with the rate of decay of, as well. For this reasom), is

0
replaced byhi. This makes it possible to replace condition

(A) by the weaker pair of conditior(s8,) and (D,) in the
eventual assumptions needed 3?1;17} (n, b) to be of order
o(b/ n);

shifted from¢&, itself to its first difference. This is needed to

obtain the right approximation error for the randorappings
example. However, since all the classical applceti make

far more stringent assumptions about gl = 2, than are

the decay rate requirement of ordef ” is

made in(By,). The critical point of the proof is seen where

the initial estimate of the difference
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P[T™ =9- R T" = s¥l] . The factor €10.19 (n),

which should be small, contains a far tail elenfeon ?11 of =0 PTon = S Ru=0
the form ¢f (N) +u;(n), which is only small ifa, >1, Zn: PT,=4RT.=nm5 PIL= RIr
being otherwise of orde®(n™2"’) for any d >0, since sz

a, >1is in any case assumed. F8& N/ 2, this gives rise < 4N “ETy + (max P[,= &)/ RT,= i
to a contribution of orderO(N®*°) in the estimate of the *+P[Ty, > N/ 2]

difference P[T,,=9—- B T,= stl], which, in the 3¢1052 (N/2,b)

remainder of the proof, is translated into a cowotibn of 6PR,[0,1]
order O(tN™®*) for differences of the form We have

PT,=9- R T,= stl], finaly leading to a  (waPllw=1

contribution of orden 2*° for any 3 >0 in &1 (n, b). | Z PlTo, =11

Some improvement would seem to be possible, defitie

function g by g(w) :]1W=S} —]{WW} , differences that are {i -4 RT=nk PI= n ]}
of the form P[T,, =9 - R T,= s ]t can be directly *

estimated, at a cost of only a single contributidrthe form T (s—-nN@-6)
¢ (n) +u(n). Then, iterating the cycle, in which one [ o =9 n+1 RE=D ) |

estimate of a difference in point probabilitiesiigproved to
an estimate of smaller order, a bound of the form

PlT,=9-RT,= s lf= Off ¢ ™) for any <—ZP[TOb—r]ZHTOb— 3 s f
0 >0 could perhaps be attained, leading to a final rerro n P[-lzan = =0 520

estimate in order O(bn™+ M®*°) for any >0, to x{5{10_14 (n,b) + 2(rDs)|1—o9| n_l{ K+ lklﬁo_a (n}}
replace & » (n,b). This would be of the ideal order 5

O(b/ n) for large enougHd, but would still be coarser for = 6nR,[0,1] E-I_(Jb‘g{lo.14(n b

<8N ’ET; +

: (1.1)

small b. s
+A1- G| ETL{ K60+ 4 ()
With band N as in the previous section, we wish to show that(L) } (1.2)
1 - enk[0,1]
dr, (L(CIL B, UL 1)) -2 () 1-6 B, - EF) ’
<& . (nb), The approximation in (1.2) is further simplified hgting that
{78 (2] (2] (s-1n(1-9)
Where &4 (n,b) = O(n*g n*br A%2*°]) for any Z P[Ty, = 1] Z HT = $T
r=0 s=0 +

0 >0 under Conditions(A,),(D,) and (B,,), with 3, .
The proof uses sharper estimates. As before, wie béth the _{Z PIT, = § (s-nN@A- 9)} |
Il R —

formula n+1
0 0
y (L(CIL, ), (21, 1)) e =1 3 A0
P[T,.=n-1 v T n+l
= P[Ty, =r1-—2—— 9'1ET1T I2)< 416 2 E 1.3
Now we observe that and then by observing that
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z P[T =1] {Z H Too

r>[n/2] s20

_a(s-nNd-9)
Rl A }

<n*l-6/(ET, AT, > W2+ E TY T,> 13}))

<4[1-6|nET, (1.4)

Combining the contributions of (1.2) —(1.3), we ghiind tha
0 0
| dr (L(CIL, b)), L(Z1L, B))
|

~(n+)7Y P, =1 {Z Ah=% s N1-9
{5{10.5(2} (n/ 2, b) +2n* E-Ebé‘{ 10.1p ( n t%

r=0 s=0
< €,4(nb)
3
~ 6P[0,1]
%rﬂﬁmm? 0s
&R0, 1]

J

+2n7ETy {4+ 31-6+

The quantity&;, 4 (n,b) is seen to be of the order claimed
under Conditions(Ay),(D,) and (B,,) , provided that

“abstract” affine space is a pair of sets , theafgtoints and
the set of vectors so that the operations as abovealefined
axiomatically). Notice that vectors in an affineasp are also
known as “free vectors”. Intuitively, they are nfixed at

points and “float freely” in space. From " considered as an
affine space we can precede in two opposite daesti] " as

an Euclidean spackl []"as an affine space> [1"as a
manifold.Going to the left means introducing somdra
structure which will make the geometry richer. Gpilo the
right means forgetting about part of the affineisture; going
further in this direction will lead us to the sdied “smooth
(or differentiable) manifolds”. The theory of difntial forms
does not require any extra geometry. So our natlirattion
is to the right. The Euclidean structure, howeiguyseful for
examples and applications. So let us say a few svabout it:

Remark 1.0. Euclidean geometry.In [1 " considered as
an affine space we can already do a good deal aihgey.
For example, we can consider lines and planes,camdric
surfaces like an ellipsoid. However, we cannot uiscsuch
things as “lengths”, “angles” or “areas” and “volesgi. To be

able to do so, we have to introduce some more itiefis,

S(o0) < oo; this supplementary condition can be removed ifmaking] "a Euclidean space. Namely, we define the length

in the definition of

([ﬁo.s} (n) is replaced by{‘ﬁo.li (n)

73 (n,b), has the required order without the restriction on|al ZZ\/(al)2 +..+ (@)

the I, implied by assuming thaB(c0) < co.Finally, a direct

calculation now shows that
ZP[TOb = r]{zl:{-rob: {s)1-9

Example 1.0. Consider the poinO = (0,...,010 " . For
an arbitrary vectorr , the coordinates of the poit= O+ r

r=0 s=20
are equal to the respective coordinates of the ovect

r:x=(x,..x")andr =(x4...,x"). The vector r such as
in the example is called the position vector orrdudius vector
of the pointX . (Or, in greater detailt is the radius-vector of
X w.r.t an origin O). Points are frequently specifigy their

radius-vectors. This presupposes the choice of Othas
“standard origin”. Let us summarize. We have abered

0" and interpreted its elements in two ways: as panid as
vectors. Hence we may say that we leading with tthe

1
- §|1_ 9| E|T0b - E-lf)b|

copies of U ": [ "={points}, [ "= {vectors}
Operations with vectors: multiplication by a numbaaldition.
Operations with points and vectors: adding a veta point
(giving a point), subtracting two points (givingvactor).[] "
treated in this way is called aadimensional affine spac@\n

19

of avectora=(a,...,d") to be

@
After that we can also define distances betweemtpoas
follows:

d(A B) = AB (2)

One can check that the distance so defined possesseral
properties that we expect: is it always non-negadind equals
zero only for coinciding points; the distance frénto B is the
same as that from B to A (symmetry); also, for ¢hpeints, A,

B and C, we haved(AB)<d AQ+ d C B (the

“triangle inequality”). To define angles, we firisitroduce the
scalar product of two vectors
3)

(a,b)=db+.+d8
Thus|a| =,/(a @) . The scalar product is also denote by

dot: ab=(a,b), and hence is often referred to as the “dot
product” . Now, for nonzero vectors, we define thegle
between them by the equality

(a,b)

[ael

The angle itself is defined up to an integral nuéti
of 277 . For this definition to be consistent we havensure
that the r.h.s. of (4) does not exceed 1 by thelates value.
This follows from the inequality

(ab) <|d’| 6’

cosa = 4

©®)
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known as the Cauchy-Bunyakovsky—Schwarz inequality-or a certainy(At) such thaty(At) — Owhen At - 0

(various combinations of these three names areiegph
different books). One of the ways of proving (5}asconsider

the scalar square of the linear combinatiarth, where

tOR. As (a+th, a+ th =0 is a quadratic polynomial in
t which is never negative, its discriminant mustléss or

equal zero. Writing this explicitly yields (5). Thiiangle

inequality for distances also follows from the inatity (5).

Example 1.1.  Consider the functionf (X) = X (the i-th

coordinate). The linear functiodlX (the differential ofX )
applied to an arbitrary vectdn is simply h' .From these
examples follows that we can rewrigf as

of of

df = dxX'+..+— d¥X, )

0X ox"
which is the standard form. Once again: the padiivatives
in (1) are just the coefficients (depending i dx', dX, ...
are linear functions giving on an arbitrary vecthr its

coordinatesh', h?, ..., respectively. Hence

(we used the linearity otlf (X;)). By the definition, this
means that the derivative of (X(t)) at t =t, is exactly

df (%,)(V) . The statement of the theorem can be expressed
by a simple formula:

df ((9) _ of .,
gt ok

of
ox'

X'

+ (2)

To calculate the value adlf at a pointx, on a given vector
U one can take an arbitrary curve passing Thro¥ghat t,
with U as the velocity vector & and calculate the usual
derivative of f (X(t)) att =t,.

Theorem 1.8. For functionsf,g:U - [J .U O0",
d(f+g)=df+ dg @)
d( fg) = df.g+ f.dg (2)

Proof. Consider an arbitrary poii, and an arbitrary vector

U stretching from it. Let a curveX(t) be such that

X(t)) = %, and X(t;) =v.
Henced( f + g)(%)(v) =%( f((9)+ o X))

of
df (x)(h) =0 =—Hh+
( )( ) hf (x) axl
of
+—h", (2
ox" @
Theorem 1.7. Suppose we have a parametrized curvét t =1, and

t > X(t) passing throughx, O] " att =t, and with the
velocity vectorX(t,) =¢ Then

WGO) =9, f(x,) = df (x,)(0) 1)

d(fg)(%)() =%( fFO(9) o X))

att =t, Formulae (1) and (2) then immediately follow from

the corresponding formulae for the usual derivativew,
almost without change the theory generalizes tcctfans

Proof. Indeed, consider a small increment of the parametdking values in (] ™ instead ofl] . The only difference is
t:t, > t,+At, WhereAt — 0. On the other hand, we that now the differential of a map :U - [J ™ at a pointX

have f(x,+h)— f(x,)= df( %)( B+ 5( h| h for an Wil be a linear function taking vectors in " to vectors in
0 m . . n

arbitrary vectorh , where B(h) — O when h - 0 (] M(instead ofl| ). For an arbitrary vecton (][] ",

Combining it together, for the increment df(x(t)) we F(x+h) = F(X)+ dH }(H

obtain
f(x(t, +At) - (%)) +B(h)[H 3)
- df()%)(UAt'*‘O’(At)At) Where ﬁ(h) — O when h - O . We have
+ B +a(At)AL) Jubt +a (At dF = (dF,...,dF") and
= df (%) (V) At+ y(ADAL
IJESPR

www.ijesonline.com
20



International Journal of Engineering Sciences Paradigms and Resear ches, Vol. 02, 1ssue 01, December 2012

ISSN (Online): 2319-6564
www.ijesonline.com

dF——dx1+ +9F e
oxt ax"
oF" oF'
o ax |[x
=l .o 4
OF™ oF™ || dX’
axt T ax

In this matrix notation we have to write vectors \a&stor-
columns.
Theorem 1.9. For an arbitrary parametrized cur¥t) in

(1", the differential of a magk:U - 0™
U OCO") maps the velocity vectoX(t) to the velocity

vector of the curve= (X(t)) in 1 ™:

% = dF(X())(X())

(where

@

Proof. By the definition of the velocity vector,

X(t+At) = x(1) + () At+a(ADAL 2)
Where a(At) — 0 whenAt — 0. By the definition of the
differential,

F(x+h)=F(x+dR(3(H+B(h| h
Where B(h)
F(x(t+At) = F(x+ X ).At+a(ADAY

h

=F(X)+dF(X)(X DA t+a(A DAY+

(3)

— O whenh = 0. we obtain

B(X()At+a(At)AY).

x(t)m+'a(m)m(

= F(X)+ dF(X)( X DA t+ p(A DAt

For some)(At) —» O whenAt — 0. This precisely means

that dF (X) X(1) is the velocity vector of (X). As every

vector attached to a point can be viewed as thecitglvector
of some curve passing through this point, this tbeogives a

clear geometric picture aiiF as a linear map on vectors.

Theorem 1.10 Suppose we have two maps:U - V and
G:V W, where UDOO"VDOUO™WODOP® (open
domains). LetF : X+ y= F(X) . Then the differential of

21

the composite mafsoF : U — W is the composition of the
differentials of F and G :

d(GoF)(¥ = d@ y odk X (4)

Proof. We can use the description of the differential

.Consider a curve(t) in [ " with the velocity vectorX .

Basically, we need to know to which vector in it is taken

by d(GOF). the curve(GOF)(X(1) = G{ F( X }). By the

same theorem, it equals the image und& of the Anycast

Flow vector to the curveF(X(t)) in O ™. Applying the
theorem once again, we see that the velocity vetttathe

curve F(X(1)) is the image undedF of the vectorx(t) .
Henced(GOH(X) = dgq dR ))) for an arbitrary vector

X.

Corollary 1.0. If we denote coordinates inl " by
(x', )@)and ind ™oy (Y',...,y™), and write
oF
dF dx1 L+—dX 1
ax 6x“ @
A— d 2
=3 yl dy +. Y, (2)
Then the cha|n rule can be expressed as follows:
0G
d(GoF) =— dF1 +—dF", 3
y1 oy"

Where dF' are taken from (1). In other words, to get
d(GoF) we have to substitute into (2) the expression for

dy = dF from (3). This can also be expressed by the
following matrix formula:

0G'  9G')(oF' oF!
oy oY || axt x| dx
d(GoR) =| ... .. .. e (4
9G® 9G” || 9F™ 9F™ |(dx’
ay* ay" L ax Tax
i.e., if dG and dF are expressed by matrices of partial

derivatives, thend(GOF) is expressed by the product of
these matrices. This is often written as
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o o7
ox X"

o o
oo 22

0z 07° 02 07
ot ax" oyt oy"

o' oy

ot ax

ST , (5)
A

ox X"
Or

07" {07 ay

= . , 6

ox? ;ay' oxX ©)

Where it is assumed that the dependenceyafl] ™ on

xO0O " is given by the mag- , the dependence &f[1[] P
on YOO ™ is given by the mag3, and the dependence of

zO0O Pon xO0 "is given by the compositiof5OF .

Definition 1.6. Consider an open domald (U ". Consider
also another copy dfl ", denoted for distinction! ';, with

the standard coordinatdy’...y"). A system of coordinates
in the open domairJ is given by a mapF :V - U,
whereV O[] 7 is an open domain df |, such that the

following three conditions are satisfied :
(1) F is smooth;

(2) F isinvertible;
3) F™:U -V isalso smooth

The coordinates of a poink[dU in this system are the
standard coordinates ¢ ~(x) 00 y
In other words,

Fi(y...y )= x=xX({...¥) @

Here the variablegy'...,y") are the “new” coordinates of
the point X

Example 1.2. Consider a curve inl 2 specified in polar

coordinates as
X :r=rt).¢=0(0) @

We can simply use the chain rule. The niap> X(t) can be
considered as the

22

composition of the map

t>(rit),¢t)),r,9)—>X({,0). Then, by the chain
rule, we have

X:%:%ﬂ+ﬁ(i:a_xr+ﬂ(¢ (2)
dt ordt 9¢ dt or 3¢

Here r and¢ are scalar coefficients depending &n

ial derivatived®/ 0
whence the partial derlvatlve@ Ar, % ¢ are vectors

depending on point inl 2. We can compare this with the

formula in the “standard” coordinatesx = g Xt 6 .).

Consider the vectorsa%r ,a%¢ . Explicitly we have
= (cosp .sing ) 3

ox _, . :
ﬁ_( rsing,r cosp ) 4

From where it follows that these vectors make dsbasall
points except for the origin (wheite= 0). It is instructive to
sketch a picture, drawing vectors corresponding fmint as

starting from that point. Notice thata%r,a%¢ are,

respectively, the velocity vectors for the curdes> X(I, @)
(@ = ¢, fixed) and@ — x(r,9) (r =r, fixed). we can
conclude that for an arbitrary curve given in palaordinates

the velocity vector will have componerﬁé,{ﬁ) if as a basis
we take€ = a%r .6 = 6%¢ :

X=gr+g¢ 5)
A characteristic feature of the badgs, ) is that it is not

“constant” but depends on point. Vectors “stuckptints”
when we consider curvilinear coordinates.

Proposition 1.3 The velocity vector has the same
appearance in all coordinate systems.
Proof. Follows directly from the chain rule anceth

transformation law for the bas@ .In particular, the elements

of the basisg = 0 % (originally, a formal notation) can be

understood directly as the velocity vectors of to®rdinate

lines X' > X(X,...,X) (all coordinates buX' are fixed).

Since we now know how to handle velocities in advit
coordinates, the best way to treat the differendfala map

F:O" -0 ™is by its action on the velocity vectors. By
Sdeﬁnition, we set
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O )

1)
Now dF(xO) is a linear map that takes vectors attached to

point )(0 00" to vectors attached to the poikt(x) 00 ™

dF =— dx1 —F dx
6x ox’
oF' OoF'
ax Taxt | dX
(CYRIN-N I ny (2
oF™ oF™ | dX
ox" X'
In particular for the differential of a functiorevalways have
of
df —&dx% S dx, 3)

Where X are arbitrary coordinates. The form of the
differential does not change when we perform a ghaof
coordinates.

Example 1.3 Consider a 1-form in] 2 given in the
standard coordinates:

A=-ydx+ xdy In the polar coordinates we will have
X=TrCcosg,y=r sinp, hence

dx=cosgdr-r singdg

dy=singdr+ r cogpdg

Substituting intoA, we get

—-rsing (cospdr —r sigpdg

+r cosg (singdr +r cogd ¢ )

=r?(sing+cosg dgp=rdg

Hence A=r’dg is the formula for A in the polar

coordinates. In particular, we see that this isragal-form, a
linear combination of the differentials of coordies with
functions as coefficients. Secondly, in a more eptgal way,

we can define a 1-form in a domdih as a linear function on

vectors at every point of U
W) =u'+...+wU", 1
— i -0
If U= ZQU , where g = o Recall that the

differentials of functions were defined as lineandtions on

vectors (at every point), and
dx(e)= dx(sx J 5'1 (2) at every point

X.

23

Theorem 19. For arbitrary 1-form@ and path)/, the

wtegraljw does not change if we change parametrization of

v
J provide the orientation remains the same.

Proof: C0n5|der<a)(x(t)) > and <w(x(t(t))),%>

As

<w(x(t(t')))%> K

Let p be a rational prime and & = ({',). We write {

dt

dx
aW(x(t(1))), —> pr

for Zp or this section. Recall thatK has degree

@¢(p) = p—1overll. We wish to show tha®, =[] [Z]

Note that{ is a root of X" =1, and thus is an algebraic
integer; sinceO, is a ring we have that [Z] UO. We

give a proof without assuming unique factorizatafndeals.
We begin with some norm and trace computations. jLéte
an integer. If ] is not divisible by p, then Zj is a primitive

th

p
¢.¢%

T, (() =+ +. 40" =0 (()-1=-1
If p does dividej, then ¢’

root of wunity, and thus its are

Pt Therefore

conjugates

=1, so it has only the one

conjugate 1, and Tr, ({') =
trace, we find that

_ 2y _
T, @-4{)=Tr,, A-{°)=...
=Tr,, @-¢")=p
We also need to compute the normloef { . For this, we use
the factorization

XPLEXPE L4 1= 0 (X)
=(x=)(x=¢*).(x=¢");

Plugging in X =1 shows that
p=1-{)A-7*)..(=¢")

since the(1-¢') are the conjugates ¢lL— ¢ ), this shows

that N,,, (L1-=¢)= p The key result for determining the

p—1 By linearity of the

ring of integersO, is the following.
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LEMMA 1.9 above shows tha®, L1l], and continuing in this way we find
(1-¢)O nll = pl
Proof. We saw above thap is a multiple of(1—¢) in

Oy, so the inclusion(1-{)O, nlJ [ pJ is immediate. Example 1.4 LeK =[] , then the local ring] (p) 1S Simply
Suppose now that the inclusion is strict. Sincet

(1-¢)O Nl is an ideal of] containing o and pll is
a maximal ideal of! , we must have(1-¢)O, nlJ =[
Thus we can write 1=a(1-¢)

For somea O, . Thatis,1-¢{ isaunitinO,.

that all of the@, are in[] . This completes the proof.

he subring of(] of rational numbers with denominator

relatively prime top . Note that this ring [] , is not the ring

(p)
[] ,of p-adic integers; to get] jone must complete/ .
The usefulness 00, , comes from the fact that it has a

particularly simple ideal structure. Lébe any proper ideal
of Oy , and consider the ide@ n O of O,. We claim

COROLLARY 1.1 For any aUOQ,,
Tr., (1-¢)a)0 pL thata=(an Q) Q ,; Thatis, tha@ is generated by the
PROOE. We have elements ofa in an q< It is clear from the definition of an

T 1-7 1-C)a)+ .+ 7 ideal thata [J (an Q) Q . To prove the other inclusion,
f -¢)a)=o,((1- .to - '
a Ja)=a(( ) Pt (¢ 7) let @ be any element o@.. Then we can writex = S/ y

=0,(1-{)a@)*..+0,,(1-{ P, ., @) where SO, and yOp. In particular, S0a (since
=(1-{)o,(@)+..+ =" Y, @) [lyOa and a is an ideal), soBUO, and yIp. so

Where thed; are the complex embeddings Kf (which we Llan OK Since 1/y0O OK’p, this implies that

are really viewing as automorphisms Kf) with the usual a=pBly0(@n OK)Q< as claimed.We can use this
p? '

ordering. Furthermorel = ¢"* is a multiple ofl =¢" in O fact to determine all of the ideals @, . Let @ be any ideal

for every | # 0. Thus
Tr., (@@-{)0@A-{ )0, Since the trace is also a

rational integer.

of Oy ,and consider the ideal factorization &fn Q¢ in

O . write it asan O, = p"b For somen and some ideal

b, relatively prime top. we claim first thadQ, , = O .

PROPOSITION 1.4 Letp be a prime number and let We now find that

— th T
K =0 ({,) bethep™ cyclotomic field. Then 2 a=(an Q)Q,= PbQ,= B Q, SincebQ, .
O =0[{,1 TO[RA/ (P [ ¥); ThUSl,Zp’---[S IS an  Thus every ideal o0, , has the formp”OK’p for somen;
integral basis folO . it follows immediately thatO, is noetherian. It is also now

PROOF. Let a O, and write
a=a,+al +..+a " with a O0. Then

clear that p”OK’p is the unique non-zero prime ideal @
. Furthermore, the inclusiolO, — Q, ,/ pQ, , Since
— 2

al-{)=a,1-{)+a(-¢")+.. PO, N O = p this map is also surjection, since the

+a,,({ -7 residue class ofr / BLIO, , (with @ 1O, and S p) is
By the linearity of the trace and our above calitofes we find
that Tr,, (a(1-{))= pa, We also have
Tr,, (@@-¢))0dp!, so a,00l]  Next consider the
algebraic integer

-1 _ p-3. . .
- =—a+ +..+

(@-a)¢ talt.. aP‘ZZ ; This is an Dedekind domain, it remains to show that it is gnédly
algebraic integer sinc€ ' =" is. The same argument as closed inK . So lety[JK be a root of a polynomial with

the image ofa',B_1 in Oy,,, which makes sense singd is

invertible in O,,,. Thus the map is an isomorphism. In

particular, it is now abundantly clear that evergnszero
prime ideal ofO, is maximal. ~ To show thaQ, ,is a

coefficients in @) write  this polynomial as

K,p?
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a a, .
X"+ oml )™y +20 with ¢ 0O, and 400, _,.
m-1 0

set B = B,5,...3,_,- Multiplying by 8™ we find that By
is the root of a monic polynomial with coefficierits O, .
Thus ByJO,; since B p, we havefy ! =y00O, ,

. Thus OK'p is integrally close inK.

COROLLARY 1.2. LetK be a number field of degre@
and leta be inO, thenN,, (aQ,) =‘ N/ (a)‘

PROOF. We assume a bit more Galois theory thaal dsu
this proof. Assume first thak /[ is Galois. Letg be an

element of Gal(K/). It is clear that
o(Oy)/o(a)0Q,,,; since g(Oy) =0, this shows
that N, ((a)O,) = N, (@ Q,) . Taking the product
all olGal(K/0), have
N, (Ne,, (@)Q) = N, (@ Q)" Since Ny, (@) is
a rational integer an@, is a free¢] -module of rankn,

O I N, (@)Q, Wil have orderN, ., (a)"; therefore

N|'</u (N ()O) = N, (@ Q)"

This completes the proof. In the general casel ldie the
Galois closure oK and se{L: K] =m

over we

I11. ROBUSTNESSDEFINITION OF ARTIFICIAL

IMMUNE SYSTEM

Up to now, the uniform definition on robustness tbe
artificial immune system has not been given. Ineordo
analyze the robustness of the artificial immunetesysbased
on the normal model, it is necessary to definertiristness
of the artificial immune system as such. In geheshien a
system has a parameter uncertainty with a defgdtge or is
dynamic without modeling to a certain extent, i€ thystem
still maintains some properties unchanged and keefisite
dynamic traits, then the system have the abilithictv is
called as robustness.

Definition 1 After the immune system is infected foyeign
pathogen, the system can recuperate its healthitwithmune
mechanism to keep it work in a normal pattern. Swah of
the system is called as robustness of the as ritm-see
artificial immune system on the normal model caegké¢he
self percent to 100%, the non-self percent to festunctions
unchanged, and assure a definite dynamic immurbty,
detecting selfs and non-selfs, recognizing the selfs and
eliminating the non-selfs. Such ability of the systis called
as robustness of the artificial immune system. (men

25

computation of the artificial immune system hasusihess,
and such robustness is maintained through maximihia self
percent and minimizing the non-self percent. Beeausmmal
artificial immune system has only selfs and no selis, the
goal of immune computation is to detect recognizel a
eliminate the non-selfs, and repair the selfs ief@cby the
non-selfs.

Definition 2 In mathematics, the maximization ofetlself
percent for the artificial immune system is représd as
such.

limO=—mstttt, (1)

Here, represents the time variable, t represemtditie point
when the immune computation is accomplished, remtsghe
sum of the selfs in the artificial immune systentle time
point t, represents the sum of the componentsearsyistem at
the time point . tOstmtt

On the other hand, the minimization of the non-pelicent for
the artificial immune system is represented as.such

limO=—mntttt, (2)
Here, represents the sum of the non-selfs at e pioint t. nt

Definition 3 In the artificial immune system, thetsof

robustness criterions is the condition set for mezing the
self percent of the system and minimizing the nelfifsercent
of the system, i.e. the condition set of convergefar the
limits in both the above formulas (1) and (2). éAudding to

the above definitions, the theorem of robustnegsrion for

the artificial immune system is proposed to analyhe

robustness of the system.

In mathematics, the criterion that the artificianhune system
has robustness is the condition that the self perfox the

system increases to 100% and the non-self peraareases
to 0, i.e. RSS

1limO=—mstttt, and OlimO=>mnitttt. (3)

[Proof] According to the statistic trait, when thaatificial

immune systems at different time points have same

compositions of selfs and non-selfs, their selfcpats,their
non-self percents and some functions for the systara all
same. Therefore, though some disturbance are cduyséue
non-selfs on the self percent, the non-self peresat some
functional parameters, at the time point the selfcpnt, the
non-self percent and some functions of the aréifiainmune
system S are same as the normal artificial immystem. At
the time, the system maintains a definite traitdghamic
immunity, such as the dynamic traits of anti-virdault
diagnosis and failover. According to definition dyring the
process of immune computation from the initial tinoethe
time point , the artificial immune system has rdhass. tOt0

Thus, the problem for analyzing robustness of thiicial

immune system can be extended into the problem
designing and maintaining robustness of the aificnmune
system. The maximization of the selfs and the mirétion of
the non-selfs in the artificial immune system cankiapt with
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the immune algorithms to make the artificial immugystem
robust.

A. Memory Cell Identification

The adaptive and evolutionary property of Gendto@thms

has been used to evolve the highly fit sister detsactivated
when an anomaly has been encountered. The gepetiators
— selection, cloning, crossover and mutation - hasen used
for this purpose. When an anomaly is encountetes stster
detectors activated as a result is called the téAdivated

Detectors”, which are candidates for memory cdllsen, the
genetic operator of selection is applied to deteemwhich of
these detectors should be cloned. The cloning libldss set
by the following formula: Cloning Threshold = Surhfitness

of all the detectors Total number of detectors Ehastivated
detectors having a fitness value greater than omletp the
cloning threshold undergo the cloning. The numteclones
to be generated for the candidate detectors igrdeted by
the following formula:

Number of Clones = Int{Fitness of detector*10 /Tidtd@ness}

Once the process of cloning is complete, the clares the
remaining activated detectors together form thes8&tinner
Detectors”. Subjecting these Winner Detectors ® dknetic
operators of Mutation and Crossover facilitates ¢lelution
of these detectors. After a substantial numberesfegations,
the detector with fithess value greater than a#l Winner
Detectors is treated as a “Memory Cell”.

IV. METHODOLOGY

In this research, an intelligent decision suppgdtesm for
nurse rostering is proposed. The architecture efpitoposed
decision support system is shown in Fig. 1. As ctegliin Fig.
1, there are four components in this system: twstero
databases and two subsystems for planning. Therioast
roster database record previous rosters and othleted
statistics, and the reserved roster database réoearticular

the reserved roster database. The core technoléghi®
system is AlS, which is inspired by theoretical immology,
as well as observed immune functions, principlesd an
mechanisms in order to solve problems in [2, 9]e TKIS
makes use of designing a shape-space to reprebent t
application domain, then defining an affinity medisg
mechanism to evaluate the interactions among thieseents,
and then using the immune algorithms to find
approximation of its optimum solution. There ardoa of
immune algorithms in AIS, each of which is suitalite
certain domains. In this research, we choose thO@NALG
and aiNet, which were proposed by de Castro, aag #re
suitable to perform tasks such as machine learmuadtern
recognition, and optimization.

the

The algorithm works as follows [4]:

1. Generate a set of N candidate solutions randomly

2. Select n highest affinity solutions according affinity
measures function;

3. Clone these n selected solutions, the numbeopfes is
proportional to their affinities;

4. Mutate these n selected solutions with a rateergely
proportional to their affinities;

5. Re-select m highest affinity mutated solutiooscompose
the new repertoire;

6. Replace some low affinity solutions by new ones;

7. Determine the similarity between each pair dfitsons;

8. Eliminate all solutions whose affinity is ledsah a pre-
specified threshold;

9. Save the best solution which has highest affisut far;

10. Repeat step 2 to 9 until a given stopping rioiteis met.

A normal model is built with the space-time propestof each
component in the system to identify the normalestait the
artificial immune system uniquely. With the nornrabdel,
the artificial immune system has many advantagekeiacting
the selfs and the non-selfs, eliminating the unkmown-selfs,
and repairing the damaged system.

A. Normal Model of System with Space-Time Properties

shifts that nurses have reserved. The roster pignni In the four-dimension space that Einstein usedetscdbe his

subsystem is the intelligent nurse rostering meisianin the
research, AIS is adopted. Once the rostering iotitns are
received, the planning subsystem will get data frim
historical roster and reserved roster databases, plerform
AIS heuristic algorithm to plan the roster and eat¢ the
quality of the roster. When the given “stop” criter is
satisfied, this subsystem will output the plannedter and

relativity theory, the state of everything is idéatl by the
space-time coordinates uniquely [9]. Inspired by thapping
relation, every component (B-cell, T-cell, or aotly etc.) in
biological
spacetime properties, which are sure useful forquely

identifying the normal statef the biological immune system.
The space property is the DNA pattern of the corepband

corresponding evaluation data to the decision stppothe time property is the time state of the compangie

subsystem. The decision support subsystem proddester
adjustment tool for the user. It will provide infoation such
as the number of constraint violations to assist tkers to
modify the roster easily. Besides, through this sgstem,
users can save a roster that they accept at ttozitéd roaster
database or the shifts that particular nurses wantserve at

26

capacity of bacterial DNA (CpG-DNA) for inducing AR to
differentiate into professional APCs is an intarestiscovery
[10]. The DNA pattern and the time state are usééul
identifying the normal state of the immune systémapired by
the biological immune system, the file-based obmdtem,
which the artificial immune system protects, cotsstf some
fles and directories, and the space property @hsolute
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pathname) and time property (the last revision Yimm@quely
identify each component in the system. Supposengooent
of the object system S, which the artificial immusygstem
protects, is represented as ci, the space prop#Ertyhe
component ci is its absolute pathname pi, and thee t
property of the component ci is its last revisiame ti, thus
the space property is a space coordinate andrtteeggioperty
is a time coordinate. With the mapping relationnirahe
physical space of the real world to the cyberspace
computers, the combined vector of the space coateliand
the time coordinate for each component is uniqurel the
vector of space-time properties is used to reptaberstate of
the component. If and only if the states of all ppments of
the system S are normal, the state of the systewrial [11].

Theorem 1 Suppose the time property is correct ha t

cyberspace, all files of the object system S anamab the
function N(.) represents the normal function (i€ tharameter
is normal, then the function s(.) represents tlaesbf the
object that the parameter denotes and the retutmediinction
is 1; if the parameter is abnormal, then the retofnthe
function is 0), then the set for the vectors of cgptime
properties for all the files {(pi, ti)|N(s(ci))=171, 2, ..., n}
uniquely identifies the normal state s(S) (N(s(%))of the
system S [12]. With the normal model of the objggtem S,
all the selfs become known and the process forctietethe
selfs is much easier than that for detecting theseifs.

B. Unknown non-self Detection of AIS with Normal Model

For human beings, detection of an unknown objenbtseasy
and sometimes causes cognitive errors, but if #és @re
known, discrimination of the unknown object fronetkelfs
becomes easier. Due to known complexity of the selfs, the
feature set of the non-selfs is unlimited in theand is not
enough for the criterions for detecting unknown -seifs.
However, many non-self detecting techniques suchias
detecting, abnormity detecting and fault detectirg based on
matching the features of the non-selfs, and théabibity for
detecting the non-self is quite limited. In fachyaunknown
non-selfs such as viruses and faults may causkldatan the
application system, so that many problems suchnéisviaus
security, fault diagnosis and robust control, ptigh non-self
detecting techniques to improve thoughts & methdtie. core
problem is how to identify the normal object systeniquely
in cyberspace, and in the real world the space-tiooedinates
uniquely identify the object that may be a systefor

Step 1. Backup the system and initialize the seet§.

Step 2. Read from the root of the system to fitekfi

Step 3. If there is at least an unread file ordow®y in the
current directory, then read the pathname and riagsion
time of the current file or directory; otherwise fgostep 6.
Step 4. Add the space-time properties of the filalicectory
into the set of selfs.

Step 5. For sub-directory, build the normal modethe sub-
system at the sub-directory recursively.

Step 6. If all the files and directories of the teys are
processed, then end the algorithm; otherwise gtefo 3.

The time complexity of the algorithm for buildinget normal
model is O(n+m). Here, n represents the sum o$ fitethe
normal system, and m represents the sum of diiestor the
normal system. With the normal model, the algoritfon
detecting the selfs and the non-selfs is desigsesiieh.

Step 1. Read from the root of the system to fitebfi

Step 2. If there is at least an unread file orao®y in the
current directory, then read the pathname and riagsion
time of the current file or directory; otherwise tgostep 6.
Step 3. Query in the self database with the spaoe-t
properties of the file or directory.

Step 4. If a record is matched, then the file oeabry is a
self; otherwise the file or directory is a non-sedind the
nonself is recognized by the algorithms for recoung the
nonselfs.

Step 5. For sub-directory, detect each componemtefsub-
system at the sub-directory recursively.

Step 6. If all the files and directories of the teys are
processed, then end the algorithm; otherwise gtefp 2. The
time complexity of the algorithm for building theommal
model is O((k+l)(m+n)). Here, k represents the sfrfiles in
the current system, and | represents the sum ettdiries in
the current system.

Theorem 2 On the condition that the time propestyarrect in
the cyberspace, detecting the selfs and the ndssith the
normal model of the object system, the probabilior
detecting the selfs is 1 and the probability fotedéng the
non-selfs is also 1 [12]. The time property dependsthe
timing mechanism of the operation systems, andldhmeithe
same with the time meaning in the real world. Foraati-
worm system, the probability for detecting the rmaifs is
shown in Fig. 1. In Fig. 1, the artificial immungsgem is

designers and users, many computer systems are MQ{grmal before the worms attack the system, sottieahormal

knowable and easier to control than the non-setisthat the
selfs for the computer system should be used tatest. In
nature, designers should know whether the systenorisal
or abnormal, and the advantage of the normal maded
identify the normal state of the object system witie
spacetime properties of the selfs. With the filsdzh object
system protected by the AIS, the algorithm for dinify the
normal model is designed.
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model is very useful for detecting all the non-self
Afterwards, some worms infect the artificial immusgstem
and damage the storage of the normal model aftdsvdihe
normal model is not good enough to detect all tbe-selfs
and the artificial immune system begins to repaielf. After
repairing, the artificial immune system starts &iedt all the
non-selfs with the normal model and eliminate ladl hon-self
in the end. According to the comparison between tthe
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approaches for detecting the non-selfs, the nommadel is
very necessary and important for detecting the suifs, even
though the normal model is not enough for detectifighe
non-selfs when the artificial immune system itéellamaged.
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